
Lab42 | www.lab42.global | arcathon@lab42.global | Mindfire Foundation

ARCathon
Python Docker Tutorial

About the Tutorial

The following will describe how you create a simple Dockerfile that allows you to create a Docker
image containing your python code. Generally, a Dockerfile is a set of instructions that specifies the
environment in which a code should run and the needed commands.

Disclaimer

This is a basic tutorial on the use of Docker. The purpose of this tutorial is to provide a practical guide
to the rules for submitting an ARCathon solution and to provide an entry point for those who have
never used Docker before.

Our Python Script

To explain the submission rules, we will "dockerize" the Python script which you can find in the same
zip folder of this PDF (named: tutorial_script.py). The script reads the evaluation data set in the data
folder. It makes a meaningless prediction about the output by taking random grids and filling them
with the color of the test input with the highest numeric value. Its goal is to explain how a submission
should run in the sense that:

• It takes the evaluation data from outside the container as input.
• It outputs text to indicate progression.
• It outputs the solutions to a JSON file with a structure described in the submission rules.

In the end, it outputs text which indicates it has finished.

Installing Docker

If you have not yet installed Docker, you can download it here. You will need it for building and running
the Docker image.

Creating a Dockerfile

As a first step, you start with an empty directory (preferably not your root directory) which you can
name docker_tutorial. In the end, this directory should contain everything needed to build the
Docker image. In the case at hand, put the script tutorial_script.py in the folder tutorial_code/ and
the folder containing the publicly available tasks in secret_data/. You could also choose different
names for these folders. However, when you submit your solution, we will put our secret task set in
the folder secret_data/evaluation/, so you can test how this works. We will explain to you how you
include this data in your image and make it available to your code below when we discuss how to
execute an image.

http://www.lab42.global/
mailto:arcathon@lab42.global
https://www.docker.com/products/docker-desktop/

Lab42 | www.lab42.global | arcathon@lab42.global | Mindfire Foundation

Now open any text editor at hand and create within the directory a new file called Dockerfile with-
out extension (like .txt). In the end, this file contains all specifications to build the Docker image
later. As a launching point, use the official Python 3 image provided by the Docker community and
choose the basic one with Python version 3.10.6 tagged 3-slim (all Python 3 versions work for this).
For this, add the following line to your Dockerfile:

The goal is to run the python script called tutorial_script.py. For this, the script needs to be added to
the Dockerfile. Above, you put the script in the folder tutorial_code/, and you can include it by add-
ing the following line:

ADD tutoria l_code /tutoria l_script.py /

Suppose that the script needs some libraries. In our example, we need the library requires NumPy.
All dependencies need to be installed before running the image. To install NumPy, add the following
line to your Dockerfile:

Now you are ready to include the command to run the script in your Dockerfile. This can be achieved
by adding the following line:

CMD ["python", "./tutoria l_script.py"]

Everything put together; your Dockerfile should look as follows (note that you can add comments by
starting your line with a #):

Use bas ic Python 3 image as launching point
FROM python:3-s lim
Add script
ADD tutoria l_code /tutoria l_script.py /
Ins ta ll dependencies
RUN pip ins ta ll numpy
Execute the script
CMD ["python", "./tutoria l_script.py"]

Summary:

• FROM specifies which image you want to base your image on (e.g., Ubuntu or here Python
3).

• ADD is used to include files like code you want to execute or anything else that should be
available when running the image.

• RUN specifies which commands should be executed when building your image.
• CMD will execute the command specified in the brackets when the image is run.

http://www.lab42.global/
mailto:arcathon@lab42.global
https://hub.docker.com/_/python

Lab42 | www.lab42.global | arcathon@lab42.global | Mindfire Foundation

Building an image

You are now ready to build an image from your Dockerfile. For this, open a terminal inside your
docker_tutorial folder and run the following command:

docker build -t docker_python_tutoria l .

The dot indicates that Docker should look for your file called Dockerfile in the current directory. The
-t is used to name your image (here, docker_python_tutorial).

Running an image
Now you are ready to run the previously built docker image as a container. You can first run the com-
mand docker images in your terminal. If the previous build was successful, you should see an entry
“docker_python_tutorial”.

As explained in the "Submission Rules & Instructions", we want to include the evaluation tasks outside
our container. Here we will take the publicly available ones, which you can download directly with this
link: ARC (800 tasks). Then put the data folder into the directory where we have our Dockerfile and
rename the data folder to secret_data/ (that’s where we will put the secret set in the folder evalua-
tion/ after you submitted your solution).

Now you are ready to run our newly created Docker image by passing it the path to our task data:

docker run --mount type=bind,source="$(pwd)"/secre t_da ta ,ta rge t=/da ta docker_python_tutoria l

This (or a similar one) is a command for the terminal which is needed for submission together with
your image. Using the mount command, you included the folder containing the tasks downloaded
before in your docker container, located in your current directory in the data folder. Finally, you use
the name of the previously created image to tell which image you want to use.

The terminal output should now look something like this:

(base) ➜ Docker_python_tutoria l docker run --mount type=bind,source="$(pwd)"/secre t_da ta ,ta rget=/da ta
docker_python_tutoria l
Genera ted solution for 50 of 400 tes t examples
Genera ted solution for 100 of 400 tes t examples
Genera ted solution for 150 of 400 tes t examples
Genera ted solution for 200 of 400 tes t examples
Genera ted solution for 250 of 400 tes t examples
Genera ted solution for 300 of 400 tes t examples
Genera ted solution for 350 of 400 tes t examples
Genera ted solution for 400 of 400 tes t examples
Program has finished!

And you should find a file solution_lab42.json in the secret_data/solution/ folder.

Further questions
Please refer to arcathon@lab42.global in case you have technical or any other questions.

http://www.lab42.global/
mailto:arcathon@lab42.global
https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip
mailto:arcathon@lab42.global

	About the Tutorial
	Disclaimer
	Our Python Script
	Installing Docker
	Creating a Dockerfile
	Building an image
	Running an image
	Further questions

