
The ultimate Guide to ARCathon

Lab42∗

February 13, 2023

Contents

1 Introduction 2

2 About ARC 2
2.1 Data format . 2

3 About ARCathon 3

4 How to start 4

5 Submission rules 4
5.1 Virtual machine . 5
5.2 Data structure . 5
5.3 Private test set . 5
5.4 Solution file . 6
5.5 Docker image . 7
5.6 Submission form . 8
5.7 Summary . 8
5.8 Frequent issues . 8

6 Docker basics 9
6.1 Basic steps . 9
6.2 Basic terms . 9
6.3 Basic commands . 10

7 Docker python tutorial 11
7.1 Python script . 12
7.2 Dockerfile . 13
7.3 Building and running the image . 14

8 Google cloud Tutorial 15
8.1 Virtual machine configuration (CPU only) . 16
8.2 Virtual machine configuration (GPU) . 16

∗https://lab42.global/arcathon/

1

https://lab42.global/arcathon/

1 Introduction

This is the official manual for the ARCathon competition hosted by Lab42. It contains all relevant
information you need to participate in ARCathon. It is not meant to be read from beginning to
start but should rather be used as an encyclopedia and things can be looked up when needed.
You can find most of the information contained in this manual also on our Website in the active
challenges section 1.

2 About ARC

ARC stands for ”abstraction and reasoning corpus” and has been introduced by François Chollet
in [1]. The dataset has been designed such that only algorithms that show a more ”human-like”
intelligence can reach high scores. It consists of 800 public tasks for training and evaluation together
with a set of 200 private tasks. On 100 of these private tasks we evaluate all solutions that are
handed in to ARCathon. You can download the 800 public tasks from our Website 2.

Each task consists of grids with a minimum size of 1x1 and a maximum size of 30x30. The cells
of the grid are filled with a number between 0 and 9, represented by ten different colors, cf. Fig. 1.

(a) 4x4 (b) 17x10 (c) 30x30

Figure 1: Examples for ARC Grids.

A task consists of several example input-output pairs of grids, typically three, and test input
grids, typically one. From the example pairs a test-taker has to infer a rule that he has to apply
to the test input to find the correct test output. A rule can both describe changes of the colors of
cells as well as a change in the grid size. An example is given in Fig. 2. A task is only successfully
solved if for all of the test inputs an output grid is constructed for which the color of each cell
as well as the grid size matches exactly the solution grid. The difficulty of ARC lies in the fact
that each of the 1000 tasks is based on a different rule. This makes hard-coding solutions near
impossible. We have an ARC playground on our website where you can test your own intelligence
on the 800 public tasks and also create your own riddles 3. Spending some time on the playground
is a good starting point for everyone that is not familiar with ARC.

2.1 Data format

As mentioned before you can find the public data set on our Website 4. In there you will find two
folders each containing 400 tasks:

• Training set: contains the 400 task files for training. You can use these tasks to prototype
your algorithm or train it to learn cognitive priors that are critical to solving ARC. On
average the tasks contained in the public training set are considered to be easiest to solve.

• Evaluation set: contains the 400 task files for your own evaluation. These tasks are con-
sidered to be slightly more difficult than the ones found in the public Training set.

The tasks are stored in JSON format. Each JSON file consists of two key-value properties:

• ”train”: list of example input/output pairs, typically contains three pairs which your algo-
rithm should use to infer a rule.

• ”test”: list of test input/output pairs, typically contains one pair. Your algorithm should
apply the constructed solution from the train pairs to the test input. In case of the public set
you have access to the test output as well and can directly check if your algorithm’s solution
is valid.

1https://lab42.global
2https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip
3https://arc-editor.lab42.global
4https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip

2

https://lab42.global
https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip
https://arc-editor.lab42.global
https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip

Figure 2: Example of an ARC task. From the 3 example grids a test-taker can infer the rule that
all black cells that are surrounded by green cells have to be filled with yellow. This rule has then
to be applied to the test grid to construct the correct solution to this task.

Each pair in the lists is itself a key-value property:

• ”input”: input grid in form of a list for the corresponding pair.

• ”output”: output grid in form of a list for the corresponding pair.

A very simple of an ARC task JSON file with three training pairs and one test pair looks as follows:

{

"train":

[

{"input":[[1,0],[0,0]],"output":[[1,1],[1,1]]},

{"input":[[0,0],[4,0]],"output":[[4,4],[4,4]]},

{"input":[[0,0],[6,0]],"output":[[6,6],[6,6]]}

],

"test":

[

{"input":[[0,0],[0,8]],"output":[[8,8],[8,8]]}

]

}

3 About ARCathon

ARCathon was launched by Lab42 in 2022 to build up a new community and renew interest in
ARC as an unsolved benchmark on our path towards human level AI. ARC was first hosted as a
competition on Kaggle 5 but the best solutions in the competition did not exceed the 20% mark. In
agreement with François Chollet we relaunched ARC as a challenge with some changes in the way
you hand in your solutions to allow more flexibility in the choice of programming languages and
platforms. However, the secret test set on which your algorithms will be evaluated in ARCathon
consists of the same tasks that have been used in the original Kaggle competitoin.

5https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge

3

https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge

In the first iteration over 100 teams from more than 40 countries tried their best to find new
solutions to ARC. While no significant leaps were achieved during ARCathon 2022, the most
promising individuals and teams were identified globally, and the challenge has been institutional-
ized. We congratulate our 1st place finisher Michael Hodel from Zurich, Switzerland, he was also
the one who managed to raise the ARC world record above 30% after ARCathon 2022 ended with
a solution combining his and several others approaches. 2nd place took Jozef Kopanicak with his
team from the Mirus Software AG based in Davos, Switzerland, and in Zilina, Slovakia. On 3rd
place finished iOS developer Simon Strandgaard from Copenhagen, Denmark.

For ARCathon 2023 we upped the stakes with a running price money of up to 69’000 CHF.
Anyone familiar with the rules of ARCathon 2022 will have no problems to continue to take part
in this new iteration.

4 How to start

For anyone who likes scientific papers a good start is to read Chollet’s paper ”On the Measure
of Intelligence” [1] - especially pp. 46-58 - and read through our ARC Page. There you find the
motivation for ARC as well as the ”core” knwoledge which is used in the rules to solve ARC tasks.
Furthermore, Lab42 has created an ARC interface 6 where you can solve the original ARC tasks
and even create new ones: ARC Playground.

From there, you can start brainstorming about your own approach. Some more inputs you can
find in Mehran Kazeminia article [2] with some answers from François Chollet.

”If you don’t know how to get started, I would suggest the following template:” 7

We recommend the first two steps of the template to everyone new to ARC:

1. ”Take a bunch of tasks from the training or evaluation set — around 10. For each task, write
by hand a simple program that solves it. It doesn’t matter what programming language you
use — pick what you’re comfortable with.

2. Think about what these programs have in common.”

From here, deviation from this template could lead to a breakthrough. We only know that Abstract
Reasoning and the concept of Core Knowledge – described in Chollet’s paper – play an essential
role in solving ARC.

3. ”Now, look at your programs, and ponder the following:

(a) Could they be expressed more naturally in a different medium (what we call a DSL, a
domain-specific language)?

(b) What would a search process that outputs such programs look like (regardless of condi-
tioning the search on the task data)?

(c) How could you simplify this search by conditioning it on the task data?

(d) Once you have a set of generated candidates for a solution program, how do you pick
the one most likely to generalize?

You will not find tutorials online on how to do any of this. The best you can do is read past
literature on program synthesis, which will help with step 3). But even that may not be that useful
:)

This challenge is something new. You are expected to think on your own and come up with
novel, creative ideas. It’s what’s fun about it!”

5 Submission rules

The general format for submissions is Docker. Docker images have the advantage that they are
portable but still leave a lot of freedom to the developers. It uses virtualization at the operating
system level to deploy software in packages called containers. All code submitted to ARCathon
must conform to the format outlined in the Rules below and be submitted as a Docker image!

Starting February 13, you can submit three Docker images per calendar week until December
1, 2023, which will be evaluated by our team within a maximum of 72 hours. Without requesting

6https://arc-editor.lab42.global
7François Chollet

4

https://arc-editor.lab42.global

a GPU your maximal runtime will be 24 hours; with GPU the maximal runtime is 5 hours. Before
submitting please make sure that your Docker image runs on a Google Cloud virtual machine
with Container-Optimized OS (details below), you can then submit your Docker image as a link
to public repository such as Docker Hub 8 or Google Container registry 9. If you are worried
about making your Docker publicly available on a registry you can also send us a direct download
link through OneDrive, Google Drive, Dropbox, or your preferred platform. Solutions must be
submitted via the submission form10.

5.1 Virtual machine

The solutions will be evaluated on a Google N1-standard-4 series server 11:

• Container-Optimized OS 101-17162.40.34 LTS 12

• 4 vCPU’s, 15GB RAM, 300 GB storage

• Max. 1 Nvidia T4 GPU; 16 GB RAM 13

• No internet access

5.2 Data structure

On the virtual machine you will have access to a folder called secret data that itself contains two
folders, evaluation and solution. In the evaluation folder you can access the files of the private
test set, the solution folder is where you should write your solution file (see below for details). A
diagram depicting the folder structure is shown in Fig. 3.

secret data

evaluation

0edafea3.json

1b3789a7.json

1c490e4d.json

...

solution

solution teamid.json

Figure 3: Folder structure on the virtual machine.

5.3 Private test set

We will evaluate your submissions on the private test set consisting of 100 Tasks in JSON form as
described in 2.1. The only difference to the public set is that the output grids of the test pairs are
replaced with [[0]], as your algorithm should not have access to the solutions it needs to construct.

A simple example JSON that could be in the private test set looks as follows:

{

"train":

[

{"input":[[1,0],[0,0]],"output":[[1,1],[1,1]]},

{"input":[[0,0],[4,0]],"output":[[4,4],[4,4]]},

8https://hub.docker.com
9https://cloud.google.com/container-registry

10https://lab42.global/arcathon/submission/
11https://cloud.google.com/compute/docs/general-purpose-machines#n1-standard
12https://cloud.google.com/container-optimized-os/docs
13https://cloud.google.com/compute/docs/gpus

5

https://hub.docker.com
https://cloud.google.com/container-registry
https://lab42.global/arcathon/submission/
https://cloud.google.com/compute/docs/general-purpose-machines#n1-standard
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/compute/docs/gpus

{"input":[[0,0],[6,0]],"output":[[6,6],[6,6]]}

],

"test":

[

{"input":[[0,0],[0,8]],"output":[[0]]}

]

}

5.4 Solution file

Your submission should output a solution file in form of a JSON file named solution teamid.json
and write it to the secret data/solution folder. The file’s name consists of ”solution” followed by
an underscore and your team ID (same as your team name) provided during registration.

Structure of the solution file The structure of the solution file should be as follows:

• It is an array of solutions for each task that are given as objects:

[{object_task_1}, ..., {object_task_n}]

• Each of the solution task objects in the list above have two key-value pairs:

– ”task name”: ”filename”
(The value is the filename of the task without ”.json”)

– ”test”: [object solution 1, object solution 2]
(The value is a list of the solutions to the tests of the task – some tasks have two inputs
and two output solutions that have to be predicted)

– The objects in the list with they key ”test” have the following key-value pairs:

∗ ”output id”: 0 or 1
(Depending on input number (first ”test” task is 0, the second one is 1)

∗ ”number of predictions”: 0, 1, 2 or 3
(Max. 3 predictions per output are allowed)

∗ ”predictions”: [object prediction 1, object prediction 2, object prediction 3]
(List of objects containing predictions — max. 3)

– The objects in the list with key “predictions” have the following key-value pairs:

∗ ”prediction id”: 1, 2 or 3
(Prediction number, the order does not matter)

∗ ”output”: [[...], ...] Your solution to the test input as list.

Example solution file A solution file that contains the solutions for two different tasks could
look as follows:

[

{

"task_name": "0edafea3",

"test":

[

{

"output_id": 0,

"number_of_predictions": 2,

"predictions":

[

{

"prediction_id": 0,

"output": [[1,1],[1,1]]

},

{

"prediction_id": 1,

"output": [[2,2],[2,2]]

}

6

]

}

]

},

{

"task_name": "1c490e4d",

"test":

[

{

"output_id": 0,

"number_of_predictions": 1,

"predictions":

[

{

"prediction_id": 0,

"output": [[1,2],[2,1]]

}

]

},

{

"output_id": 1,

"number_of_predictions": 2,

"predictions":

[

{

"prediction_id": 0,

"output": [[1,1,2],[1,1,9]]

},

{

"prediction_id": 1,

"output": [[1,1],[1,1],[2,2]]

}

]

}

]

}

]

You can also download an example file from our Website 14

5.5 Docker image

Any docker image that runs on the above virtual machine is allowed. It can contain all kinds of
data – publicly available or not – including pre-trained models. The image has to be supplied
together with a run command such that when running the container with the provided command
it takes the private test set files located in secret data/evaluation and outputs the solution file
to secret data/solution. The docker image should also indicate whether it is still running by, for
example, outputting how many tasks have already been solved, and by indicating when the program
has finished (e.g., by displaying the message ”Done!”

Accessing the private test set Your docker container can access the private test set by mount-
ing the corresponding secret data folder present on the virtual machine. An example for the mount
part of the Docker run command is the following:

mount type=bind,source="$(pwd)"/secret_data, target=/data

In this example the secret data directory is mounted in the Docker container and made accessible
as data.

14https://lab42.global/wp-content/uploads/2022/08/solution_teamid.json

7

https://lab42.global/wp-content/uploads/2022/08/solution_teamid.json

Writing the solution file If you have mounted the secret data folder correctly and can access
the private test set you can just write your solution file to the solution folder and it will be accessible
by us once your code has finished.

5.6 Submission form

You have to submit your solution via the submission form available on our website 15. Among
details about your team you have to provide the following things in the form:

• Download link to your Docker image.

• If the download link is not for a repository also provide a command to load the docker image.
For example ”docker load ¡ file.tar”

• Docker run command, e.g.,

docker run --mount type=bind,source="$(pwd)"/secret_data,target=/data IMAGE

5.7 Summary

To make an ARCathon submission do the following steps:

1. Create a Docker image containing your algorithm that runs on the virtual machines specified
in 5.1 taking the private tasks as an input 5.3 and outputs a solution in the correct format 5.4.

2. Upload the Docker image to a Docker repository and make it accessible. In case you prefer
to send us a direct download link save the docker image as a tar file (”docker save IMAGE
> /path/to/file.tar”).

3. Fill out the submission form. We send you a confirmation once we receive your submission.

4. You will receive a score or feedback from us within 72 hours.

5.8 Frequent issues

In this section we list a few issuces that frequently occur with the submissions to help avoid them
in the future.

Building images on ARM machines (like the newer apple devices) If you build your
image on a machine with an architecture that differs from the virtual machine one used for evalua-
tion make sure that you specify the architecture of the virtual machine when building your image.
It will still run on your local machine albeit not as efficient. The easiest way to do this is to
specify the platform in the Dockerfile when you pull your base image. For example when you use
an existing python base image:

Use the Python base image for the correct architecture:

FROM --platform=linux/amd64 python:3.9

Install dependencies

:

Using a GPU When using a GPU make sure that it works on our virtual machine with Container
Optimized OS. The - -gpus all flag does not work and instead on the virtual machine you need a
run command like the following 16:

docker run \

--volume /var/lib/nvidia/lib64:/usr/local/nvidia/lib64 \

--volume /var/lib/nvidia/bin:/usr/local/nvidia/bin \

--device /dev/nvidia0:/dev/nvidia0 \

--device /dev/nvidia-uvm:/dev/nvidia-uvm \

--device /dev/nvidiactl:/dev/nvidiactl \

IMAGE

15https://lab42.global/arcathon/submission/
16https://cloud.google.com/container-optimized-os/docs/how-to/run-gpus#configuring_docker_

containers_to_consume_gpus

8

https://lab42.global/arcathon/submission/
https://cloud.google.com/container-optimized-os/docs/how-to/run-gpus#configuring_docker_containers_to_consume_gpus
https://cloud.google.com/container-optimized-os/docs/how-to/run-gpus#configuring_docker_containers_to_consume_gpus

Furthermore, CUDA applications running in Docker containers that are consuming NVIDIA GPUs
need to dynamically discover CUDA libraries. This requires including /usr/local/nvidia/lib64 in
the LD LIBRARY PATH environment variable.

We recommend using Ubuntu-based CUDA Docker base images for CUDA applications on
Container-Optimized OS, where LD LIBRARY PATH is already set appropriately 17. As an
example the beginning of a Dockerfile that is working properly:

Use a Cuda Docker base image with LD_LIBRARY_PATH set appropriately

FROM --platform=linux/amd64 nvidia/cuda:11.8.0-runtime-ubuntu22.04

Install dependencies

:

6 Docker basics

Docker is a platform to develop, deploy, and run applications in containers. A container is a
lightweight, standalone, and executable package of software that includes everything needed to run
a piece of software, including the code, runtime, system tools, libraries, and settings.

6.1 Basic steps

When using Docker for the first time, here are some of the basic steps explaining the workflow:

1. Install Docker: Before using Docker, you need to install it on your computer. You can find
installation instructions for various operating systems on the Docker website 18.

2. Pull a Docker Image: Docker images are the building blocks of containers. You can pull an
existing image from a registry like Docker Hub or create your own. To pull an image, use
the docker pull command followed by the image name.

3. Run a Container: Once you have an image, you can use it to run a container. To run a
container, use the docker run command followed by the image name. You can also specify
options like the inclusion of external data, port mapping and environment variables when
running a container.

4. Explore Container: To check the details of a running container, use the docker ps command
to list all running containers and the docker inspect command to inspect a specific container.

5. Stop and Remove Containers: When you’re done with a container, you can stop it using the
docker stop command followed by the container name or ID. You can also remove it using
the docker rm command.

These are some basic steps to start using Docker. For the purpose of ARCathon you will want to
create your own image. A short tutorial on that is given in the next section.

6.2 Basic terms

Dockerfile A Dockerfile is a text file that contains instructions for building a Docker image. It
specifies the base image to use, the files to copy into the image, the commands to run inside the
image, and the environment variables to set.

A Dockerfile is a step-by-step script that automates the process of creating a Docker image.
You can think of a Dockerfile as a blueprint for a Docker image. By following the instructions in
the Dockerfile, Docker can build an image that is consistent and repeatable, and that can be used
to run containers anywhere.

To build an image using a Dockerfile, you can use the docker build command. Docker will
read the instructions in the Dockerfile, download the base image if necessary, run the specified
commands, and produce a new image that you can use to run containers.

Here is an example of a Dockerfile that could be used when working with Python:

Use an existing Python base image

FROM python:3.9

17https://hub.docker.com/r/nvidia/cuda/tags/
18https://www.docker.com

9

https://hub.docker.com/r/nvidia/cuda/tags/
https://www.docker.com

Set the working directory

WORKDIR /app

Copy the contents of the current directory into the image

COPY . .

Install required packages

RUN pip install --no-cache-dir -r requirements.txt

Run the script

CMD ["python", "main.py"]

This Dockerfile starts with a base image of Python 3.9 and sets the working directory to /app. It
then copies the contents of the current directory into the image, which includes a requirements.txt
file with the dependencies required.

Next, it uses the RUN directive to run the pip command and install the required packages from
the requirements.txt file. This ensures that all the necessary packages are installed in the image
and available to use when running the script.

Finally, the CMD directive specifies the command to run when the container starts, which is
python main.py in this case. This will start running the main.py script.

You can build the image using this Dockerfile with the docker build command, and then run a
container from the image to perform the data analysis.

Registry A registry is a place where Docker images are stored and distributed to others. A
registry can be public or private, and it allows users to upload, store, and manage Docker images.
When you create a Dockerfile you typically start with an image that you pull from a registry.

The most well-known public registry is Docker Hub 19. It is a centralized repository for Docker
images, where anyone can upload, download, and share images with others. The free tier on
Dockder Hub will be enough for the purpose of ARCathon.

Docker image vs container A Docker image is a blueprint or a snapshot of a Docker appli-
cation that includes all of its dependencies, configuration files, and other necessary components.
Essentially, it’s a package that contains everything needed to run an application inside a Docker
container. Docker images are immutable, which means that once you create an image, you cannot
change it. However, you can create new images based on an existing image by making modifications
to it. A docker image is what we would like you to submit.

On the other hand, a Docker container is a running instance of a Docker image. It is a
lightweight, standalone, and executable package of software that includes everything needed to
run the application. Containers are created from Docker images, and they allow you to run an
application in an isolated environment. Each container runs in its own isolated environment, with
its own file system, environment variables, and network settings.

In summary, Docker images are the building blocks for containers, and containers are the
instances of running images. You can have multiple containers running from the same image, but
each container is a separate instance of the application with its own isolated environment. We
would like you to submit a Docker image such that we minimze potential failure points when we
evaluate your solution.

6.3 Basic commands

Here are some of the basic Docker commands that you will use frequently:

• docker run: This command is used to start a new container from an image. The basic
syntax is docker run [OPTIONS] IMAGE [COMMAND] [ARG...]. For example, to start
a new container from the arc solution image, you would run docker run arc solution. Of
importance for an ARCathon submission is the - -mount option which will allow your
docker container to access the private test set. The basic syntax is docker run –mount
type=bind,source=local folder,target=container folder [OPTIONS] IMAGE [COMMAND] [ARG...].
For example if you have a local folder secret data on your host that you want to mount in a
Docker container at /app/data you would run the following command:

19https://hub.docker.com

10

https://hub.docker.com

docker run --mount type=bind,source=/secret_data,target=/app/data

[OPTIONS] IMAGE [COMMAND] [ARG...]

• docker build : This command is used to build an image from a Dockerfile. The basic syntax
is docker build [OPTIONS] PATH — URL — -. For example, to build an image from a
Dockerfile in the current directory, you would run

docker build .

• docker ps: This command lists all the containers that are currently running on the host. The
basic syntax is docker ps [OPTIONS]. For example, to list all the containers, you would run

docker ps

• docker stop: This command is used to stop a running container. The basic syntax is docker
stop CONTAINER ID. For example, to stop a container with the ID d9b100f2f636, you would
run

docker stop d9b100f2f636

You can obtain the ID using the docker ps command mentioned above.

• docker images: This command lists all the images that are currently stored on the host. The
basic syntax is docker images [OPTIONS] [REPOSITORY[:TAG]]. For example, to list all
the images, you would run

docker images

• docker rmi : This command is used to delete an image from the host. The basic syntax is
docker rmi IMAGE ID. For example, to delete an image with the ID sha256:cbb..., you would
run

docker rmi sha256:cbb...

The image ID can be obtained with the docker images command mentioned before.

• docker logs: This command is used to view the logs of a running container. The basic syntax
is docker logs CONTAINER. For example, to view the logs of a running container with the
ID arcathon, you would run the following command:

docker logs arcathon

This will display the logs generated by the application running inside the container. By
using the –follow or -f option, you can follow the logs in real-time, similar to using the tail
-f command. The –since option allows you to only display logs generated since a specified
time or date.

These are just a fw of the basic Docker commands existing. However, they should be enough to
get you started and make your first submission.

7 Docker python tutorial

We have created a short tutorial that explains how your code can be integrated in Docker if you
use Python as your programming language. We will describe how you create a simple Dockerfile
to build your first image containing a python code that reads in the private test set and generates
a random solution file. You can find the tutorial with all Code on our Website 20.

The Tutorial contains the following:

1. Simple python file creating a valid solution file.

2. Creation of the Dockerfile

3. Building and running the image

But please note that the very reason for using Docker is that you can use any programming
language you want.

20https://lab42.global/wp-content/uploads/2022/10/ARCathon-Docker-Python-Tutorial.zip

11

https://lab42.global/wp-content/uploads/2022/10/ARCathon-Docker-Python-Tutorial.zip

7.1 Python script

To explain the submission rules, we will ”dockerize” the Python script which you can find in the
zip folder mentioned before (named: tutorial script.py). The script reads the evaluation data set
in the data folder. It makes a meaningless prediction about the output by taking random grids and
filling them with the color of the test input with the highest numeric value. Its goal is to explain
how a submission should run in the sense that:

• It takes the evaluation data from outside the container as input.

• It outputs text to indicate progression.

• It outputs the solutions to a JSON file with a structure described in the submission rules.

In the end, it outputs text which indicates it has finished.
The python script consists of a function to load the JSON files of the tasks which splits them

into training and test tasks separated into a list of dictionaries:

import json

import os

import numpy as np

Define function to read tasks

def load_tasks(path):

"""

Function to load .json files of tasks

:param path: Path to folder where tasks are stored

:return: - training and test tasks separated into a list of dictionaries

where each entry is of the type {'input': [.task.], 'output': [.task.]}

- list of file names

"""

Load Tasks

Path to tasks

tasks_path = path

Initialize list to s

tore file names of tasks

tasks_file_names = list(np.zeros(len(os.listdir(tasks_path))))

Initialize lists of lists of dictionaries to store training and test tasks

Format of items will be [{'input': array,'output': array},...,

{'input': array,'output': array}]

tasks_count = len(os.listdir(tasks_path))

train_tasks = list(np.zeros(tasks_count))

test_tasks = list(np.zeros(tasks_count))

Read in tasks and store them in lists initialized above

for i, file in enumerate(os.listdir(tasks_path)):

with open(tasks_path + file, 'r') as f:

task = json.load(f)

tasks_file_names[i] = file

train_tasks[i] = []

test_tasks[i] = []

for t in task['train']:

train_tasks[i].append(t)

for t in task['test']:

test_tasks[i].append(t)

return train_tasks, test_tasks, tasks_file_names

We can then use this function to read in all evaluation tasks, make the random predictions and
create the solution file:

12

Read in evaluation tasks

training_tasks, testing_tasks, file_names = load_tasks('data/evaluation/')

Get number of test tasks for outputting progress later and define counter.

num_test_tasks = len(testing_tasks)

counter = 0

Do some stuff to generate solution

Allocate space for overall solution

solution = []

Iterate over all tasks to generate solution

for test_task, task_filename in zip(testing_tasks, file_names):

Allocate space for solutions of task examples

test = []

Store filename

task_name = task_filename.strip('.json')

Iterate over test examples (1 or 2)

for id_example, example in enumerate(test_task):

Get input of example

example_input = example['input']

Do some stuff to generate output

Get maximal value of input

input_max = np.amax(example_input)

Do some random stuff to generate outputs

Random grid sizes

random_grid_sizes = np.random.randint(1, 5, size=(3, 2))

Allocate space for predictiction objects

predictions = []

Make predictions taking random grid sizes and filling the resulting arrays with

color found above

for prediction_id, grid_size in enumerate(random_grid_sizes):

Generate output prediction and change it to a list to create json file later

output = np.full(grid_size, input_max, dtype=np.uint8).tolist()

object_prediction = {'prediction_id': prediction_id, 'output': output}

predictions.append(object_prediction)

Generate object solution containing all predictions

object_solution = {'output_id': id_example, 'number_of_predictions': len(predictions),

'predictions': predictions}

Add solution of example to list of solutions

test.append(object_solution)

Add solution of examples to overall solution

object_task = {'task_name': task_name, 'test': test}

solution.append(object_task)

Output progress

counter += 1

if counter % 50 == 0:

print('Generated solution for {} of {} test examples'.format(counter, num_test_tasks))

Finally, we store the created solution file as a JSON into the correct folder:

Store solution to json file named solution_teamid where our teamid is lab42

Store it in solution folder which is mounted

solution_json = json.dumps(solution)

with open('../data/solution/solution_lab42.json', 'w') as outfile:

outfile.write(solution_json)

Print that program has finished

print("Program has finished!")

7.2 Dockerfile

Before creating a Dockerfile it is best to start with an empty directory (preferably not your root
directory) which you can name docker tutorial. In the end, this directory should contain everything
needed to build the Docker image. In the case at hand, put the script tutorial script.py in the
folder tutorial code/ and the folder containing the publicly available tasks in secret data. You

13

could also choose different names for these folders. However, when you submit your solution, we
will put our private task set in the folder secret data/evaluation/, so you can test how this works.
We will explain to you how you include this data in your image and make it available to your code
below when we discuss how to execute an image.

Now open any text editor at hand and create within the directory a new file called Dockerfile
without any extension (like .txt). In the end, this file contains all specifications to build the
Docker image later. As a launching point, use the official Python 3 image provided by the Docker
community 21 and choose the basic one with Python version 3.10.6 tagged 3-slim (we choose the
slim one as it is sufficient for our purpose). For this, add the following line to your Dockerfile:

FROM python:3-slim

The goal is to run the python script called tutorial script.py. For this, the script needs to be added
to the Dockerfile. Above, you put the script in the folder tutorial code/, and you can include it by
adding the following line to the Dockerfile:

ADD tutorial_code/tutorial_script.py /

Suppose that the script needs some libraries. In our example, we need the library requires NumPy.
All dependencies need to be installed before running the image. To install NumPy, add the following
line to your Dockerfile:

RUN pip install numpy

Now you are ready to include the command to run the script in your Dockerfile. This can be
achieved by adding the following line:

CMD ["python", "./tutorial_script.py"]

Everything put together; your Dockerfile should look as follows (note that you can add comments
by starting your line with a #):

Use basic Python 3 image as launching point

FROM python:3-slim

Add script

ADD tutorial_code/tutorial_script.py /

Install dependencies

RUN pip install numpy

Execute the script

CMD ["python", "./tutorial_script.py"]

Summary:

• FROM: specifies which image you want to base your image on (e.g., Ubuntu or here Python
3).

• ADD: is used to include files like code you want to execute or anything else that should be
available when running the image.

• RUN: specifies which commands should be executed when building your image.

• CMD: will execute the command specified in the brackets when the image is run.

7.3 Building and running the image

You are now ready to build an image from your Dockerfile. For this, open a terminal inside your
docker tutorial folder and run the following command:

docker build -t docker_python_tutorial .

The dot indicates that Docker should look for your file called Dockerfile in the current directory.
The -t is used to tag your image (here, docker python tutorial).

We can now run the image as a container and test it out. You can first run the command
docker images in your terminal. If the previous build was successful, you should see an entry
“docker python tutorial”. As explained in the ”Submission Rules & Instructions”, we want to

21https://hub.docker.com/_/python

14

https://hub.docker.com/_/python

include the evaluation tasks outside our container. Here we will take the publicly available ones,
which you can download on our website 22. Then put the data folder into the directory where
we have our Dockerfile and rename the data folder to secret data/ (that’s where we will put the
private test set in the folder evaluation/ after you submitted your solution).

Now you are ready to run our newly created Docker image by passing it the path to our task
data:

docker run --mount type=bind,source="$(pwd)"/secret_data,target=/data docker_python_tutorial

This (or a similar one) is a command for the terminal which is needed for submission together with
your image. Using the mount command, you included the folder containing the tasks downloaded
before in your docker container, located in your current directory in the data folder. Finally, you
use the name of the previously created image to tell which image you want to use.

The terminal output should now look akin to this:

(base) docker run --mount type=bind,source="$(pwd)"/secret_data,target=/data

docker_python_tutorial

Generated solution for 50 of 400 test examples

Generated solution for 100 of 400 test examples

Generated solution for 150 of 400 test examples

Generated solution for 200 of 400 test examples

Generated solution for 250 of 400 test examples

Generated solution for 300 of 400 test examples

Generated solution for 350 of 400 test examples

Generated solution for 400 of 400 test examples

Program has finished!

And you should find a file called solution lab42.json in the secret data/solution/ folder.

8 Google cloud Tutorial

In this section we will briefly explain you how you can set up your own virtual machine that has
the same specifications as the one we use to evaluate your submissions. In that way you can test
out your solutions directly before sending them to us. Note also that every new user gets free
credits on Google Cloud which you can use for this purpose.

These are the first steps we suggest:

1. Create a Google Cloud account: If you don’t already have a Google Cloud account, sign up
for one at https://cloud.google.com.

2. Go to the Google Cloud Console: Once you have a Google Cloud account, log in to the
Google Cloud Console 23.

3. Create a new project: In the Google Cloud Console, click the project drop-down menu and
select or create the project that you want to use for the virtual machine.

4. Go to the Compute Engine section: In the Google Cloud Console, navigate to the Compute
Engine section by clicking on the navigation menu and selecting Compute Engine > VM
instances 24.

5. Create a new instance: To create a new instance, click the ”Create” button.

6. Configure the instance: In the ”Create an instance” form, you will be prompted to configure
the instance. Choose a name for the instance, select a zone, choose the machine type and the
boot image. The configurations we chose for ARCathon are described in the next subsection.

7. Create the instance: When you’re ready, click the ”Create” button to create the instance.

8. Connect to the instance: Once the instance is created, you can connect to it by clicking the
”SSH” button in the Google Cloud Console. This will open a terminal window and connect
you to the instance.

22https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip
23https://console.cloud.google.com
24https://console.cloud.google.com/compute

15

https://cloud.google.com
https://lab42.global/wp-content/uploads/2022/08/ARC-800-tasks.zip
https://console.cloud.google.com
https://console.cloud.google.com/compute

9. Start using the virtual machine and test your images: You can now use the virtual machine to
install software, run applications, and perform other tasks as necessary. As we use Container
Optimized OS, Docker will be preinstalled and you can directly pull your image from a
registry or also upload it if you have it in form of an archive.

8.1 Virtual machine configuration (CPU only)

In step 6 of the list before you have to configure the VM such that it matches with the configuration
we use. For that after you have chosen a name and a region in the Machine configuration section
choose GENERAL-PURPOSE and then Series N1 and machine type n1-standard-4 (cf. Fig. 4).

Figure 4: Machine configuration of the virtual machine without GPU.

In the Boot disk section click on CHANGE and choose Container Optimized OS and Container-
Optimized OS 101-17162.40.34 LTS as the operating system and version. We take a balanced
persistent disk as boot disk type. It should look as in Fig. 5

Figure 5: Boot disk configuration together with choise of operating system.

Apart from that we use the standard settings and you can click on CREATE.

8.2 Virtual machine configuration (GPU)

The only difference compared to the configuration of the VM without GPU is in the Machine
configuration section where we add one Nvidia T4. It looks as in Fig. 6.

16

Figure 6: Machine configuration of the virtual machine with GPU.

Note that when using a GPU before being able to use CUDA you have to install the necessary
drivers. They are provided by Google in case of the operating system we have chosen and you can
find the explanation how you can install these drivers in the Documentation provided by Google 25

References

[1] François Chollet. “On the measure of intelligence”. In: arXiv preprint arXiv:1911.01547 (2019).
url: https://arxiv.org/pdf/1911.01547.pdf.

[2] Mehran Kazeminia. “A Commentary on the Abstraction and Reasoning Challenge — Kag-
gle Competition”. In: (). url: https : / / medium . com / swlh / a - commentary - on - the -

abstraction-and-reasoning-challenge-kaggle-competition-16ba30fac0ec.

25https://cloud.google.com/container-optimized-os/docs/how-to/run-gpus#install

17

https://arxiv.org/pdf/1911.01547.pdf
https://medium.com/swlh/a-commentary-on-the-abstraction-and-reasoning-challenge-kaggle-competition-16ba30fac0ec
https://medium.com/swlh/a-commentary-on-the-abstraction-and-reasoning-challenge-kaggle-competition-16ba30fac0ec
https://cloud.google.com/container-optimized-os/docs/how-to/run-gpus#install

	Introduction
	About ARC
	Data format

	About ARCathon
	How to start
	Submission rules
	Virtual machine
	Data structure
	Private test set
	Solution file
	Docker image
	Submission form
	Summary
	Frequent issues

	Docker basics
	Basic steps
	Basic terms
	Basic commands

	Docker python tutorial
	Python script
	Dockerfile
	Building and running the image

	Google cloud Tutorial
	Virtual machine configuration (CPU only)
	Virtual machine configuration (GPU)

